
PHYSICAL REVIEW E 68, 036111 ~2003!
Critical behavior and scaling functions of the three-dimensional O„6… model
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Fakultät für Physik, Universita¨t Bielefeld, D-33615 Bielefeld, Germany
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We numerically investigate the three-dimensional O~6! model on 123 to 1203 lattices within the critical
region at zero magnetic field, as well as at finite magnetic field on the critical isotherm and for several fixed
couplings in the broken and the symmetric phase. We obtain from the Binder cumulant at vanishing magnetic
field the critical couplingJc51.42865(3). The universal value of the Binder cumulant at this point is
gr(Jc)521.94456(10). At the critical coupling, the critical exponentsg51.604(6), b50.425(2), and n
50.818(5) are determined from a finite-size-scaling analysis. Furthermore, we verify predicted effects induced
by massless Goldstone modes in the broken phase. The results are well described by the perturbative form of
the model’s equation of state. Our O~6! result is compared to the corresponding Ising, O~2! and O~4! scaling
functions. Finally, we study the finite-size-scaling behavior of the magnetization on the pseudocritical line.

DOI: 10.1103/PhysRevE.68.036111 PACS number~s!: 05.50.1q, 64.60.Cn, 75.10.Hk, 12.38.Lg
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I. INTRODUCTION

The chiral phase transition of quantum chromodynam
~QCD! is of great interest for the understanding of the ea
universe and the physics of heavy ion collisions. For t
massless quark flavors it is supposed to be of second o
and to lie in the same universality class as the thr
dimensional O~4! spin model@1–3#. If these assumptions ar
valid, one can use the knowledge of the spin model to
derstand the critical behavior of the QCD phase transitio

It has been shown@4,5# that the scaling behavior in lattic
simulations with two light quark flavors is indeed comp
rable to the universal infinite volume scaling function of t
O~4! spin model if one uses Wilson fermions, although t
Wilson fermion action has no chiral symmetry on the lattic
For staggered fermions, however, the O~4! scaling function
does not match the QCD data. For two flavors on the lat
the staggered fermion action has a remaining U(1)3U(1)
chiral symmetry. As this symmetry lies in the same univ
sality class as the three-dimensional O~2! spin model, the
data has also been compared to approximated infinite vol
O~2! data. But the O~2! scaling function matches even wors
than the O~4! function. Since the lattice sizes used in QC
are rather small, it might be better to compare the data
universal finite-size-scaling functions. We have indeed fou
@6# that the finite-size-scaling functions on the pseudocriti
line of O~2! and O~4! are compatible with staggered QC
data.

It has turned out problematic to check QCD data for f
ther critical behavior found in spin models, e.g., the Go
stone effect. In QCD with fermions in the fundamental re
resentation the chiral and the deconfinement ph
transitions occur at the same temperature. This could cha
the properties of the chiral phase transition, as additio
degrees of freedom are released.

However, in QCD with fermions in the adjoint represe
tation~aQCD! the two phase transitions are separated, so
can study them individually. Since the left-handed and rig
handed spinors are indistinguishable in the adjoint repre
tation, the chiral symmetry group is SU(2Nf) and not
SU(Nf)L3SU(Nf)R as in the fundamental representatio
1063-651X/2003/68~3!/036111~11!/$20.00 68 0361
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Thus, for two flavors the symmetry group is SU~4!, which is
isomorph to SO~6!, a subgroup of O~6!. The universality
class of QCD with adjoint fermions therefore has to be t
of the O~6! spin model. In this paper our results for th
universal properties of this model will be shown, especia
the scaling functions, which are needed for our forthcom
study of aQCD, continuing the work of Karsch and Lu¨tge-
meier @7#.

The model we investigate is the standard O~6!-invariant
nonlinears model, which is defined as

bH52J (
^x,y&

fW x•fW y2HW •(
x

fW x . ~1!

Here x and y are the nearest-neighbor sites on a thr
dimensional hypercubic lattice,fW x is a 6-component unit
vector at sitex, and HW is the external magnetic field. Th
coupling constantJ is considered as inverse temperatu
thereforeJ51/T. An additional term(x@fW x

21l(fW x
221)2# is

often used in the Hamiltonian withl tuned to minimize lead-
ing order corrections to scaling. It is not applied here, b
cause the appropriatel value of the O~6! model has not been
calculated yet, and such a calculation is beyond the scop
this paper.

If H5uHW u is nonzero we can decompose the spin vec
fW x into a longitudinal~parallel to the magnetic fieldHW ) and
a transverse component

fW x5fx
i eWH1fW x

' with eWH5HW /H. ~2!

The order parameter of the system, the magnetizationM, is
the expectation value of the lattice averagef i of the longi-
tudinal spin component

M5K 1

V (
x

fx
i L 5^f i&, ~3!

V5L3 is the volume of the lattice withL points per direc-
tion.
©2003 The American Physical Society11-1
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At zero magnetic field (H50) there is no special direc
tion and the lattice average of the spins

fW 5
1

V (
x

fW x ~4!

will have a vanishing expectation value on all finite lattice

^fW &50W . As an approximate order parameter forM at H50
one can take@8#

M.^ufW u&. ~5!

Nevertheless, we can usefW to define the susceptibilities an
the Binder cumulant by

xv5V^fW 2&, ~6!

x5V~^fW 2&2M2!, ~7!

gr5
^~fW 2!2&

^fW 2&2
23. ~8!

In the following section we describe our simulations at ze
magnetic field and estimate the critical couplingJc from the
Binder cumulant, the magnetization, and the susceptibilit
In Sec. II the critical exponentsn, b, andg are determined.
With simulations atH.0 in Sec. III we investigate the be
havior of the model on the critical line, in the broken pha
and in the symmetric phase. Finally, the resulting data is u
in Sec. IV to generate the infinite volume scaling function
the magnetization. Using this data the infinite volume scal
function of the susceptibility and the position of the pseu
ocritical line are derived in Sec. V. A summary and our co
clusions are given in Sec. VI.

II. SIMULATIONS AT HÄ0

All our simulations were done on three-dimensional cu
lattices with periodic boundary conditions. We used Wolf
03611
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single cluster algorithm as we did in our previous pap
~Refs.@6# and @9–11#!. The H50 data were taken from lat
tices with linear extensionsL512, 16, 20, 24, 30, 36, 48, 60
and 72. Between the measurements we performed 300–
cluster updates to reduce the integrated autocorrelation
t int for the energy.

Butera and Comi@12# determined the critical point of the
O~6! spin model using a high temperature~HT! expansion as
Jc51.42895(6). Therefore we generally scanned the ran
from J51.3 up toJ51.55 on smaller lattices with carefu
regard to the critical region close to theJc value found in
@12# for all lattices. This data was then further analyzed us
the reweighting method. More details of the simulations n
the critical point are presented in Table I.

A. The critical point Tc

Obviously any determination of critical values as well
the definition of the reduced temperature

t5
T2Tc

Tc
~9!

TABLE I. Survey of the Monte Carlo simulations atH50 for
different lattices. HereNJ is the number of different couplings per
formed in the appropriateJ range;t int is the integrated autocorre
lation time for the energy andNmeas the number of measuremen
per coupling in units of 1000.

L J range NJ Nmeas@1000# t int

12 1.42830–1.42900 25 100–200 &3
16 1.42840–1.42880 18 100–200 &4
20 1.42840–1.42885 19 100–200 &6
24 1.42835–1.42885 19 100–200 &6
30 1.42840–1.42885 18 100–200 &6
36 1.42840–1.42880 17 100 &5
48 1.42840–1.42880 17 100 &6
60 1.42840–1.42880 16 80 &8
72 1.42840–1.42880 16 80 &9
ye.
es. The
the
FIG. 1. ~a! The Binder cumulantgr from Eq. ~8! as a function of the couplingJ. The points are connected by splines to guide the e
With increasing lattice sizeL512, 16, 20, 24, 30, 36, 48, 60, and 72, the slope of the respective curve in the critical region increas
vertical dashed line denotes our final result forJc . ~b! is an enlargement of~a! near the critical point. The dotted lines accompanying
solid and/or dashed lines show the jackknife error corridors.
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relies on the exact location of the critical point. Since there
no result from numerical studies, we check the aforem
tioned value of Butera and Comi first. We determineTc by
studying the Binder cumulantgr , which is a finite-size-
scaling function

gr5Qg~ tL1/n,L2v!. ~10!

The functionQg depends on the thermal scaling field and
possible irrelevant scaling fields. In this case only the lead
irrelevant scaling field proportional toL2v is specified, with
an unknownv.0. Therefore, at the critical point (t50) gr
ought to be independent ofL apart from corrections due t
these irrelevant scaling fields. Figure 1~a! shows our results
for gr . On the scale of Fig. 1~a! we observe no deviation
from the scaling hypothesis. After an enlargement of
close vicinity of the critical point, as shown in Fig. 1~b!, one
sees that the intersection pointsJip between the curves o
different lattices are not coinciding perfectly at oneJ. These
minor corrections to scaling have to be considered. By
panding the scaling functionQg to lowest order in both vari-
ables one gets for the intersection pointJip of two lattices
with sizesL andL85bL

Jip~L,b!5Jc1c1s~L,b! ~11!

with

s~L,b!5
12b2v

b1/n21
L2v21/n. ~12!

To have an unbiased estimate ofJc we choose Binder’s ap
proximation@13#

1

Jip
5

1

Jc
1

c2

ln b
, ~13!

which can be used without knowing the values ofn andv. In
Fig. 2 the 1/Jip values of the intersection points from th

FIG. 2. The couplingJip at the intersection point ofgr(L) and
gr(bL) for variousL and b as a function of 1/lnb, Eq. ~13!. The
lines are linear fits for the latticesL512 ~solid black!, 16 ~long
dashed black!, 20 ~short dashed gray!, 24 ~long dashed gray!, 30
~short dashed black!, and 36~solid gray! through the intersection
points with all larger lattices. The errors of the end points are dra
on the ordinate.
03611
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latticesL512, 16, 20, 24, 30, 36 with all other larger lattice
are plotted as a function of the variable 1/lnb of Eq. ~13!.
Linear fits should lead to the same value 1/Jc within the
errors. Fitting the results to a constant value and varying
usedL values we find

1

Jc
50.699960~14!, ~14!

which is equivalent to

Jc51.42865~3!. ~15!

This result agrees in the first four digits with the resultJc
51.42895(6) of Butera and Comi@12#. There is a slight
difference in the last two digits. As this difference is larg
than the corresponding errors, we check our result with
x2 method@14# described in the following.

Let us review the general form of the scaling relations
different observablesO

O5Lr/nQO~ tL1/n,L2v!, ~16!

where we only take the largest irrelevant exponent into
count. HereO is M, x, or gr with r52b, g, and 0, respec-
tively. Expanding the functionQO to first order in the vari-
ables we find

O5Lr/n~c01~c11c2L2v!tL1/n1c3L2v!, ~17!

which reduces to

O5Lr/n~c01c3L2v! ~18!

at the critical pointt50. Therefore at the critical coupling
fit with Eq. ~18! has the minimalx2. Since we do not know
the influence ofc3L2v we started without this correction
term leavingL512 out. Figure 3~a! shows the result. We
find a deviation from our preliminary result in case of th
magnetizationM and the susceptibilityxv . The minima from
the Binder cumulant and the susceptibilityx, however, coin-
cide atJ'1.42865.

We thereafter made fits with the correction term in t
rangev50.5– 1.5. The minimalx2 and a perfect agreemen
of Jc for all observables is found atv50.5. This result is
plotted in Fig. 3~b!. x2 per degree of freedom~d.o.f.! in-
creases withv and shiftsJc in case ofM andxv to smaller
couplings, while the position calculated fromx increases and
Jc from gr remains nearly constant. Since the fits get wo
we can excludev values larger than 0.8. The positions ofJc
for 0.5<v<0.8 coincide within the error bars of Eq.~15!.

At the critical point the Binder cumulant has the form

gr~L !5gr~Jc!1c3L2v, ~19!

with the universal valuegr(Jc) and a small correction term
c3L2v. For fits with differentv we find gr

gr~Jc!521.94456~10!. ~20!

n

1-3
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FIG. 3. The minimalx2 per
degree of freedom for fits accord
ing to Eq.~18! for M ~solid gray!,
xv ~short dashed!, x ~solid!, and
gr ~long dashed!. ~a! shows the re-
sults without a correcting term
}L2v, whereas~b! usesv50.5.
The dotted lines show our previ
ous value ofJc , the arrows the
result of @12# with its error bars.
The curves ofM andxv lie on top
of each other.
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The quality of the fits does not change much (x2 per d.o.f.
'0.2– 0.3) with differentv so a better estimate ofv is still
not possible.

B. The critical exponents

Since we now know the critical coupling we can study t
finite-size behavior of several observables with Eq.~18!.
These can be extracted from our reweighted data atTc . The
studied scaling relations are

M5L2b/n~a01a3L2v!, ~21!

x5Lg/n~b01b3L2v!, ~22!

with vP@0.5;1.0@ and the exponents2b/n and g/n as free
parameters. Since these two ratios are connected by the
perscaling relation

g

n
532

2b

n
, ~23!

it is necessary to study a further observable, for example
derivative ofgr , which is given atTc by

]gr

]J
5L1/n~d01d3L2v!. ~24!

In this way two independent exponents~e.g.,b andn! can be
estimated. We fit all observables in the rangeL512– 72.
From Eq.~21! we obtain

b

n
50.519~2!, ~25!

in which the error also includes anv variation in @0.5, 1.0@.
Here a largerv shifts b/n to a smaller value at nearly con
stant x2 per d.o.f.'0.4. Figure 4 shows the result withv
50.5.

Our x fits yield

g

n
51.961~3!. ~26!
03611
hy-

e

Our results ofb/n and g/n are tested with the hyperscalin
relation

2
b

n
1

g

n
5d, ~27!

with d53 being the dimension of the model. The left-ha
side of this equation is 2.999~5!, correct within the error.

Finally we analyze the derivative]gr /]J of the Binder
cumulant atTc . This observable is directly calculated from
the spline connection of our reweighted data in the neighb
hood of the critical point. The errors are obtained with t
jack-knife method, which seems to underestimate the err
so we therefore assume the largest error of the differenL
values for each lattice. Our fit to ansatz~24! without correc-
tions to scaling (x2 per d.o.f.'0.3) is shown in Fig. 5. For
d350 we find

1

n
51.223~5!. ~28!

The final results of the critical exponents are summarized
Table II. b andg are calculated with the result ofn and the
ratios~25! and~26!. The three last columns of the table sho

FIG. 4. The magnetizationM as a function of the lattice exten
sion L at the critical pointTc andH50. The dashed line in is a fi
to the ansatz~21! with v50.5.
1-4
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CRITICAL BEHAVIOR AND SCALING FUNCTIONS OF . . . PHYSICAL REVIEW E 68, 036111 ~2003!
the results from@12#, @15#, and@16,17#. Butera and Comi as
well as Gracey are in good agreement with our values,
the results of Antonenko and Sokolov are farther away.

In the following sections we use the fixed critical exp
nentsb50.425 andn50.818. The remaining critical expo
nents are calculated by the respective hyperscaling relat
between the critical exponents. Forv we will use the value
v50.5, which seems to be the best estimate in all invest
tions.

III. SIMULATIONS AT HÌ0

The magnetizationM is now calculated from Eq.~3!. A
transversal and a longitudinal susceptibility can be define

xL5V~^M2&2M2!, ~29!

xT5V^~fW '!2&. ~30!

We simulated at several constantJ values and increasing
magnetic field, starting atH50.00025. The used lattice size
were L524, 36, 48, 72, 96, and 120. Around 20 000 me
surements were performed in the (J,H) regions we used for
our fits. The only exception was the data ofL5120, where
we performed 10 000 measurements atJc and 5000 measure
ments at all otherJ values. The integrated autocorrelatio
time for the energy and the magnetization is strongly dep
dent on the usedJ values. AtJc andJ.Jc we increased the
number of cluster updates between two measurement
have autocorrelation timest int&6.

FIG. 5. The derivative of the binder cumulant]gr /]J as a func-
tion of the lattice extensionL at the critical pointTc andH50. The
dashed line is a fit to the ansatz~24! with d350 since the correc-
tions are negligible.
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In the symmetric phase (J,Jc) the situation is different.
While the measurements of the magnetization are less co
lated witht int(M )&4, the correlation of the energy increas
rapidly with decreasingH and J. It reaches values o
t int(E)&30 for the larger lattices.

A. The critical isotherm

At the critical point the critical scaling of the magnetiz
tion is given by

M ~Tc ,H !5dcH
1/d~11dc

1Hvnc!, ~31!

where nonanalytic corrections from the leading irreleva
scaling field are taken into account. They are not negligi
in our model. The critical exponentsd and nc are known
from the hyperscaling relations and only depend on the r
b/n50.519(2):

d53
n

b
2154.780~22!, ~32!

nc5
n

bd
50.4031~24!. ~33!

In order to exclude finite-size effects we carry out a
weighting analysis for all lattices and fit the result from t
largest lattice to approximate the value ofV→`. This is
done for the intervalHP@0.00075;0.04# and we find

dc50.642~1!. ~34!

Our result is plotted in Fig. 6. There are minimal negati
corrections. If one treatsd as a free parameter the resultd
54.79(1) agrees with our first estimate.

The finite-size-scaling function for the magnetization is

M ~T,H,L !5L2b/nF~ tL1/n,HL1/nc,L2v!. ~35!

The scaling functionF can be expanded inL2v to

M ~T,H,L !5L2b/nF0~ tL1/n,HL1/nc!1¯ . ~36!

At Tc the leading part is now given by

M ~Tc ,H,L !5L2b/nQM~z8! ~37!

with the universal scaling functionQM(z8) and the argumen
z85HL1/nc. The results of all lattices are shown in Fig.
The data points scale very well and the influence of corr
tions to scaling is small. In the limitz8→` we expect the
asymptotic behavior
cal
TABLE II. The critical exponents for the O~6! model estimated in this work compared to the theoreti
work of Butera and Comi@12#, Atonenko and Sokolov@15#, and Gracey@16,17#.

Source Exponent This work @12# @15# @16,17#

]gr /]J 1/n 1.223~5! n 0.818~5! 0.819~3! 0.790 0.819
M b/n 0.519~2! b 0.425~2! 0.424~5! 0.407 0.424
x g/n 1.961~3! g 1.604~6! 1.608~4! 1.556 1.609
1-5
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S. HOLTMANN AND T. SCHULZE PHYSICAL REVIEW E68, 036111 ~2003!
QM ,`~z8!5dcz81/d, ~38!

which is observable forz8*40. This way one checks th
value of dc with a fit of reweightedz8 data of the larger
latticesL572, 96, 120. We finddc50.642(1), which agrees
perfectly with our first value ofdc .

B. Numerical results at TÅTc

Let us review some perturbative predictions for the m
netization and the susceptibilities. The continuous O~6! sym-
metry of our spin model gives rise to spin waves, which
slowly varying ~long-wavelength! spin configurations with
energies arbitrarily close to the ground-state energy. Ind
.2 they are massless Goldstone modes associated with
spontaneous breaking of the rotational symmetry for te
peratures below the critical valueTc @18#. For T,Tc the
system is in a broken phase, i.e. the magnetizationM (T,H)
attains a finite valueM (T,0) atH50.

The transverse susceptibility has the form

FIG. 6. The magnetization at the critical coupling as a funct
of H. The solid line is the fit to the ansatz~31!, while the dashed
line is the leading term.

FIG. 7. The finite-size-scaling functionQM ,` on the critical line,
Eq. ~37!. The solid line indicates the asymptotic functionQ0,̀ for
z8*40.
03611
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xT5
M ~T,H !

H
~39!

for all H andT. This relation is a direct consequence of t
O~6! invariance of the zero-field free energy and can be
rived as a Ward identity@19#.

The longitudinal susceptibility diverges on the coexi
ence curve for 2,d<4 @20,21#. The leading terms in the
perturbative expansion for three dimensions are

xL~T,Tc ,H !5b0~T!H21/21c2~T!. ~40!

Since the susceptibility is the derivative of the magnetizat
with respect toH we find for the magnetization

M ~T,Tc ,H !5M ~T,0!1c1~T!H1/21c2~T!H ~41!

near the coexistence curve. Figure 8 shows our results o
magnetization in the broken phase and the correspon
extrapolations toM (T,0) in the thermodynamic limit (V
→`). The numbers of the parameters are presented in T
III. The H extension of the regions, where the predict
Goldstone behavior is found, increases withJ, while finite-
size effects become larger at smallH and largerJ (L*160
would be necessary for finite-size independent data!.

We fitted the values ofM (T,0) to the form

M ~T&Tc,0!5B~Tc2T!b@11b1~Tc2T!vn1b2~Tc2T!#
~42!

with fixed valuesb50.425,vn50.409 and the result

B51.22~1!, ~43!

b1520.184(49), andb250.31(13). The error ofB also in-
cludes the slight uncertainty in the value ofvn. Our final
result of M (T,0) and the difference to the leading term a
plotted in Fig. 9.

FIG. 8. The magnetization in the broken phase as a function
AH for the couplingsJ51.6, 1.55, 1.50, 1.47, 1.45, andJc and
different lattices, starting with the largestJ value at the top. The
solid lines represent interpolations from a reweighting analysis
the data. The dashed lines are the fits to ansatz~41! while the dotted
line is the fit of Eq.~31! at Jc .
1-6
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TABLE III. Parameters of the fit ofM (T,Tc,0) to the ansatz~41!. The fifth column is the used fit range

J51/T M(T,0) c1(T) c2(T) 104H x2 per d.o.f.

1.45 0.1701~03! 1.339~15! 22.86~18! 9–25 0.45
1.47 0.2219~02! 0.924~02! 21.138~14! 12–74 0.56
1.50 0.2761~01! 0.659~01! 20.436~08! 10–93 0.27
1.55 0.3401~01! 0.463~01! 20.141~02! 10–163 0.78
1.60 0.3878~01! 0.363~01! 20.047~01! 19–175 0.49
a
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Since one of the main aims of this work is the determin
tion of the magnetic equation of state in Sec. IV, we a
simulated in the high temperature phase. Again we use
of the largest lattices as an approximation for the infin
volume value. The result is plotted in Fig. 10. From a Tay
expansion we expect

M ~T.Tc ,H !}H ~44!

at smallH. With increasing temperature theH interval with
this behavior increases, as one can see in Fig. 10.

IV. THE SCALING FUNCTION

The critical behavior of the magnetization in the vicini
of Tc is described by the general Widom-Griffiths form@22#

y5 f ~x! ~45!

with

y[h/M d, x[t8/M1/b, ~46!

where the variablet8 is proportional to (T2Tc) andh pro-
portional toH. A common normalization of the functionf (x)
is

f ~0!51, f ~21!50. ~47!

The variablest8 and h are the conveniently normalized re
duced temperature t85(T2Tc)/T0 with T05B21/b

50.626(12) and the reduced magnetic fieldh5H/H0 using

FIG. 9. MagnetizationM (T,0) on the coexistence curve as
function of (Tc2T). The solid line is the fit to ansatz~42! while the
dashed line is the leading part.
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H05dc
2d58.32(6). Thefunction f (x) is universal and was

derived from thee expansion (e542d) to ordere2 @19#. In
the limit x→21, i.e., atT,Tc and close toH50 the result
was inverted to givex11 as a double expansion in powe
of y andyd/221 @21#

x115 c̃1y1 c̃2yd/2211d̃1y21d̃2yd/21d̃3yd221¯ .
~48!

The coefficientsc̃1 , c̃2 , andd̃3 are thereafter obtained from
the general expression of@19#.

In the large-x limit ~corresponding toT.Tc and smallH!,
the expected behavior is given by Griffiths’s analyticity co
dition @22#

f ~x!5 (
n51

`

anxg22~n21!b. ~49!

The form ~45! of the equation of state is equivalent to th
often used relation

M5h1/d f G~z!, ~50!

where f G is a further universal scaling function andz the
combination

z5t8/h1/bd. ~51!

The normalization conditions off G(z) are

FIG. 10. The magnetization in the symmetric phase (T>Tc) as
a function ofH, starting from the top with fixedJ5Jc , 1.42, 1.41,
1.40, and 1.38 and differentL values. The lines are spline conne
tions between the data points.
1-7
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f G~0!51 and f G~z! ——→
z→2`

~2z!b. ~52!

This version is normally used for comparison to QCD latt
data. The functionf (x) is connected withf G(z) by

y5 f G
2d , x5z fG

21/b . ~53!

These scaling functions are only valid close toJc and H
→0. First tests show that the data we have used in the bro
phase do not scale directly, while in the high temperat
phase most of the data scale close toTc and smallH. So we
used a more general form of~50!

Mh21/d5C~z,hvnc! ~54!

with a scaling functionC, which can be expanded to

Mh21/d5 f G~z!1hvncf G
~1!~z!1h2vncf G

~2!~z!1¯ .
~55!

This way in the broken phase one obtains the leading parf G
by quadratic fits to our data inhvnc at constantz values and
different (J/H) combinations. But we are only able to co

FIG. 11. The functionM /h1/d. The solid lines in the broken
phase are the reweighted results forM /h1/d at J51.60, 1.55, 1.50,
1.47, 1.45, 1.445, and 1.44, from the bottom to the top. They
extrapolated with Eq.~55! to f G ~dashed line!. The circles are single
data points in the symmetric phase.
03611
en
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rect the data withz&22 because we have not enoughJ
values closer toJc to make the fits. In Fig. 11 we show th
influence of the corrections and the final scaling functionf G
in the broken phase~dashed line!.

Our result forf G(z) can be transformed with~53! into the
Widom-Griffiths form of the equation of the state~45!. Un-
fortunately thez interval we used to extractf G(z) is only
equivalent to the small region20.9&x&20.7, which can be
used for a fit. We use the three leading terms in Eq.~48!

x1~y!115~ c̃11d̃3!y1 c̃2y1/21d̃2y3/2. ~56!

Since y(0)51 the coefficients are connected byd̃251
2( c̃11d̃31 c̃2). Fits to x in the interval 20.9&x&20.7
and points in the symmetric phase with 0.2&x&2.9, 1.4
&J,Jc , andH<0.0015 lead to

c̃11d̃350.36~5!, c̃250.69~3!. ~57!

The result of the fit is shown by the line in Fig. 12~a!.
For largex we use a 3-parameter fit of the first three term

of Griffith’s analyticity condition~49!

y2~x!5a1xg1a2xg22b1a3xg24b ~58!

in the intervalxP@1.75,202# and data points restricted t
1.4&J,Jc andH<0.0015. We find

a150.92~1!, a251.17~2!,

a350.91~3!. ~59!

This result is plotted in Fig. 12~b!. With the coefficienta1 of
the leading part one can calculate the universal ratio

Rx5a1
2g51.14~2!. ~60!

The O~6! scaling functionf G can be parametrically obtaine
from x1(y) and y2(x), which is connected by a spline be
tweenz50.5 andz50.8, where we have no reliable param
etrization. The result is plotted in Fig. 13~a!. Also plotted are
the leading terms of the asymptotic behavior atz→6`.
These are

re
ta
n
-
tz
FIG. 12. The functions y
5 f (x) at smallx ~a! and largex
values~b!. In ~a! we plot the fit to
ansatz ~56! using extrapolated
data in the broken phase and da
points in the symmetric phase. I
~b! we plot data points of the sym
metric phase and the fit to ansa
~49! using the first three terms.
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FIG. 13. ~a! The scaling func-
tion f G of the O~6! model ~solid!
and the asymptotic behaviors fo
z→` andz→2` ~dashed lines!.
~b! The scaling functionf G for the
Ising ~solid!, O~2! ~dots!, O~4!
~short dashes!, and O~6! model
~long dashes!.
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f G~z! 5
z→2`

~2z!b, ~61!

f G~z! 5
z→1`

Rxz2g ~62!

according to the normalization~52!. The fact that for large
temperatures and smallH the magnetization is proportiona
to H, see Eq.~44!, explains the asymptotic behavior forz
→`. In the symmetric phase the asymptotic behavior
reached for small absolute values ofz, while in the broken
phase the scaling function converges to the asymptotic f
not until large absolute values ofz.

Finally, the O~6! scaling functionf G can be compared to
the corresponding functions for the Ising@O~1!# model@23#,
the O~2! model @10#, and the O~4! model @9#, shown in Fig.
13~b!. All functions have a similar shape.

V. THE PSEUDOCRITICAL LINE

In order to discuss finite-size-scaling functions in
easier way, it is common to study lines of constantz values.
There one expressesH as a function ofT or vice versa.
Important examples of lines of fixedz are the critical line
(z50), discussed in Sec. III A, and the pseudocritical li
z5zp5const, the line of peak positions of the susceptibil
xL in the~t, h! plane forV→`. There are two different ways
to find that value ofzp for O(N) models. One way is to
locate the peak positions ofxL as a function of the tempera
ture at different fixed small values of the magnetic field
lattices with increasing sizeL3. The scaling function, on the
other hand, offers a more elegant way to determine
pseudocritical line. SincexL is the derivative ofM

xL5
]M

]H
5

h1/d21

H0
f x~z!, ~63!

its scaling functionf x(z) can be calculated directly from
f G(z)

f x~z!5
1

d S f G~z!2
z

b

] f G

]z
~z! D . ~64!
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The maximum off x(z) is located atzp , which is another
universal quantity. We find for the O~6! model

zp51.34~5!. ~65!

The error includes the fit errors of the parameters in Eq.~59!.
In Fig. 14 we show the result forf x(z) from Eq. ~64! in

the O~6! model. At zp a finite-size-scaling analysis in th
variablesH andL can be performed. Equation~36! reduces
to

M ~H,L !5L2b/nQzp
~hL1/nc!1¯ ~66!

with another universal scaling functionQzp
. The asymptotic

form Qzp ,` of Qzp
is

Qzp
→

L→`

Qzp ,`5 f G~zp!~hL1/nc!1/d. ~67!

The results are presented in Fig. 15~a!. The data do not scale
directly but with increasing volume the data points approa
Qzp

from the top. In Fig. 15~b! we plotted the data in a
double-logarithmic form and find that the asymptotic for
Qzp ,` coincides with theQzp

value of the largest lattice ex

FIG. 14. The scaling functionf x for the O~6! model. The dashed
line shows the position ofzp51.34.
1-9
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FIG. 15. ~a! Finite-size scaling ofMLb/n on the pseudocritical line.~b! is a double-logarithmic plot of~a!. The solid line in~b! shows the
asymptotic formQzp ,` ; the symbols denote different lattice sizesL.
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tension at HL1/nc*42. Therefore,Qzp
is asymptotic. At

smaller values, one observes an approach ofQzp
from below

to Qzp ,` .

VI. CONCLUSIONS

In this paper we calculated several important quantities
the O~6! spin model directly from Monte Carlo simulation
on cubic lattices. At zero external field we determined
critical coupling Jc by a finite-size-scaling analysis of th
Binder cumulant and by thex2 method. Our result agrees i
the first four digits with the result of Butera and Comi. At th
critical point we estimated the critical exponents from fini
size-scaling fits. We obtainedb from the magnetization,g
from the susceptibility, andn from the derivative of the
Binder cumulant. Our results are in accord with the valu
found by Butera and Comi but slightly different compared
the values found by Antonenko and Sokolov. We find sm
corrections to scaling for all observables.

On the critical line T5Tc , H.0 and in the limit V
→`, the critical amplitudedc of the magnetization was
computed. We found small negative corrections to sca
and checked the finite-size-scaling behavior ofM at Tc and
its asymptotic form.

Below the critical temperature, we investigated the beh
ior of M at several couplingsJ as a function ofH1/2 in the
limit V→`. Close to the coexistence line, i.e., smallH
→0, the predicted Goldstone behavior was observed. We
trapolated our data to the valuesM (T,Tc ;H50) of the
infinite volume limit, fitted theseM values with the corre-
sponding ansatz, and estimated the critical amplitudeB of
03611
f

e

-

s

ll

g

-

x-

the magnetization. In this case the corrections to scaling w
again negative and more pronounced as on the critical l
At high temperatures andH,0, we observed the expecte
proportional dependence onH of the magnetization.

We used our data of the largest lattices in the low- a
high-temperature phase to parametrize the scaling func
f G of the O~6! model. We encountered large corrections
scaling in the broken phase, while most data in the symm
ric phase scales directly. By generalizingf G to include cor-
rections to scaling, our group extracted a part off G in the
broken phase and fitted the result combined with direct d
points in the symmetric phase. On the other hand, we fi
data of the symmetric phase using Griffiths’s analyticity co
dition. Finally, we compared our O~6! result for f G with the
corresponding scaling functions of the O~1!, O~2!, and O~4!
model. These functions are clearly distinguishable and i
systematic order. We use our result off G to calculate the
scaling functionf x of the susceptibility. From the position o
the maximum inf x the location of the pseudocritical lin
was determined. There we made finite-size-scaling plots
found considerable corrections to scaling. The data
smaller lattices approach the universal finite-size-sca
function from above. The asymptotic form of the univers
part is reached atHL1/nc'42. A comparison between th
O~6! model and aQCD will be done in the near future.
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