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Critical behavior and scaling functions of the three-dimensional @6) model
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We numerically investigate the three-dimensiongb)Omodel on 12 to 12@ lattices within the critical
region at zero magnetic field, as well as at finite magnetic field on the critical isotherm and for several fixed
couplings in the broken and the symmetric phase. We obtain from the Binder cumulant at vanishing magnetic
field the critical couplingJ.=1.4286%3). The universal value of the Binder cumulant at this point is
0,(Jc) = —1.94456(10). At the critical coupling, the critical exponents 1.6046), 8=0.4252), andv
=0.818(5) are determined from a finite-size-scaling analysis. Furthermore, we verify predicted effects induced
by massless Goldstone modes in the broken phase. The results are well described by the perturbative form of
the model’s equation of state. Our@&) result is compared to the corresponding Ising2)&and Q4) scaling
functions. Finally, we study the finite-size-scaling behavior of the magnetization on the pseudocritical line.
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I. INTRODUCTION Thus, for two flavors the symmetry group is &W which is
isomorph to S@), a subgroup of @5). The universality
The chiral phase transition of quantum chromodynamicslass of QCD with adjoint fermions therefore has to be that
(QCD) is of great interest for the understanding of the earlyof the Q6) spin model. In this paper our results for the
universe and the physics of heavy ion collisions. For twouniversal properties of this model will be shown, especially
massless quark flavors it is supposed to be of second ordéte scaling functions, which are needed for our forthcoming
and to lie in the same universality class as the threestudy of aQCD, continuing the work of Karsch andtge-
dimensional @) spin mode[1-3]. If these assumptions are meier[7].
valid, one can use the knowledge of the spin model to un- The model we investigate is the standarG@nvariant
derstand the critical behavior of the QCD phase transition. honlinears model, which is defined as
It has been showj#,5] that the scaling behavior in lattice
simulations with two light quark flavors is indeed compa-
rable to the universal infinite volume scaling function of the
O(4) spin model if one uses Wilson fermions, although the
Wilson fermion action has no chiral Symmetry on the Iattice.Here X and y are the nearest_neighbor sites on a three-

For staggered fermions, however, thédDscaling function _dimensional hypercubic Iatticezix is a 6-component unit
does not match the QCD data. For two flavors on the lattice ) - L
the staggered fermion action has a remaining U(U)1) vector at sitex, and H is the external magnetic field. The

chiral symmetry. As this symmetry lies in the same univer-coupling constant] is considered as inverse temperature,

sality class as the three-dimensional2Dspin model, the therefore]=1/T. An additional ternis,| 5 +\(d;—1)?] is

data has also been compared to approximated infinite volum@ften used in the Hamiltonian with tuned to minimize lead-
O(2) data. But the @) scaling function matches even worse ing order corrections to scaling. It is not applied here, be-
than the @4) function. Since the lattice sizes used in QCD cause the appropriatevalue of the @6) model has not been
are rather small, it might be better to compare the data téalculated yet, and such a calculation is beyond the scope of
universal finite-size-scaling functions. We have indeed foundhis paper.

[6] that the finite-size-scaling functions on the pseudocritical If H=|H| is nonzero we can decompose the spin vector

line of O(2) and Q4) are compatible with staggered QCD g into a longitudinal(parallel to the magnetic fieldi) and

BH=—J<XEY> J>x~$y—ﬁ~§ bx.- 1)

data. _ a transverse component
It has turned out problematic to check QCD data for fur-
ther critical behavior found in spin models, e.g., the Gold- b= ‘J(éHﬂLﬁZi with &,=H/H. @)

stone effect. In QCD with fermions in the fundamental rep-
resentation the chiral and the deconfinement phassf. e order parameter of the system, the magnetizaois
transitions occur at the same temperature. This could chanqléje ox ectgtion value of the Igttice ’averag'bgf the longi-
the properties of the chiral phase transition, as additionat di Ip . i 9
degrees of freedom are released. udinal spin componen

However, in QCD with fermions in the adjoint represen- 1
tation (aQCD) the two phase transitions are separated, so one M = < =3 ¢|> — (), 3)
can study them individually. Since the left-handed and right- V& T
handed spinors are indistinguishable in the adjoint represen-
tation, the chiral symmetry group is SU{2) and not V=L3is the volume of the lattice with points per direc-
SU(N;) X SU(Nf)g as in the fundamental representation. tion.
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At zero magnetic field i =0) there is no special direc- TABLE I. Survey of the Monte Carlo simulations =0 for
tion and the lattice average of the spins different lattices. Herd; is the number of different couplings per-
formed in the appropriaté range; 7, is the integrated autocorre-

-1 - lation time for the energy anl,,.,sthe number of measurements
b= v; bx (4) per coupling in units of 1000.
will have a vanishing expectation value on all finite lattices,- Jrange Ny Nmead 1000 Tint
($)=0. As an approximate order parameter fdratH=0 12 1.42830-1.42900 25 100-200 =3
one can tak¢s] 16 1.42840-1.42880 18 100-200 =4
N 20 1.42840-1.42885 19 100-200 =<6
M=(| 4]). G 24 1.42835-1.42885 19 100-200 =6
hel - fi h ibiliti 30 1.42840-1.42885 18 100-200 <6
Rl]evgrt de ess, Wei' ca:nbuaeto define the susceptibilities and 36 1.42840—1.42880 17 100 =5
€ binder cumuiant by 48 1.42840-1.42880 17 100 <6
_\y/ 72 60 1.42840-1.42880 16 80 =8
Xo=V($7), © 2 1.42840-1.42880 16 80 <9
X=V({($*)—M?), " _ o _
single cluster algorithm as we did in our previous papers
<(<Z>2)2> (Refs.[6] and[9—11]). TheH=0 data were taken from lat-
;=————3. (8)  tices with linear extensionis=12, 16, 20, 24, 30, 36, 48, 60,
(p?)? and 72. Between the measurements we performed 300—600

cluster updates to reduce the integrated autocorrelation time
In the following section we describe our simulations at zeror, . for the energy.
magnetic field and estimate the critical couplihgfrom the Butera and Comj12] determined the critical point of the
Binder cumulant, the magnetization, and the susceptibilitiesg(6) spin model using a high temperatui¢T) expansion as
In Sec. Il the critical exponents, B8, and y are determined. j.=1.4289%6). Therefore we generally scanned the range
With simulations atH>0 in Sec. Il we investigate the be- from J=1.3 up toJ=1.55 on smaller lattices with careful
havior of the model on the critical line, in the broken phase,regard to the critical region close to t[j@ value found in
and in the symmetric phase. Finally, the resulting data is usefi 2] for all lattices. This data was then further analyzed using

in Sec. IV to generate the infinite volume scaling function ofthe reweighting method. More details of the simulations near
the magnetization. Using this data the infinite volume scalinghe critical point are presented in Table I.

function of the susceptibility and the position of the pseud-
ocritical line are derived in Sec. V. A summary and our con- A. The critical point T,

clusions are given in Sec. VI. . o "
Obviously any determination of critical values as well as

L SIMULATIONS AT H=0 the definition of the reduced temperature

All our simulations were done on three-dimensional cubic t= T 9)
lattices with periodic boundary conditions. We used Wolff’s Te
-1.6F T T [ T - -1.943
|
gr | ¢ 72
% | o 60
| x 48
b } s 36 -1.9445
| x 30
-1.8F | o 24
Wl & 20
VY + 16
il v 12 -1.945
J
-2.0F -
| L | | -1.946
1.3 1.4 1.5 1.6 1.4284 1.4286 1.4288 1.4290

FIG. 1. (a) The Binder cumulang, from Eq.(8) as a function of the coupling. The points are connected by splines to guide the eye.
With increasing lattice size =12, 16, 20, 24, 30, 36, 48, 60, and 72, the slope of the respective curve in the critical region increases. The
vertical dashed line denotes our final result 3gr (b) is an enlargement df) near the critical point. The dotted lines accompanying the
solid and/or dashed lines show the jackknife error corridors.
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1 4/‘/ latticesL =12, 16, 20, 24, 30, 36 with all other larger lattices
0'70000»1/Jip |-~ : are plotted as a function of the variable Hlof Eq. (13).
e Linear fits should lead to the same value) livithin the
1 1 errors. Fitting the results to a constant value and varying the

) usedL values we find

0.69995 = B 1
3= 0.69996014), (14

C

which is equivalent to
0.69990 1/1n(b)

o 1 2 3 4 5 ¢ Jo=1.428683). (15

FIG. 2. The couplingl;, at the intersection point af,(L) and ~ This result agrees in the first four digits with the resijt
g,(bL) for variousL andb as a function of 1/lib, Eq. (13). The  =1.42895(6) of Butera and Conjil2]. There is a slight
lines are linear fits for the latticels=12 (solid black, 16 (long  difference in the last two digits. As this difference is larger
dashed black 20 (short dashed gray24 (long dashed gray 30  than the corresponding errors, we check our result with the
(short dashed blagkand 36(solid gray through the intersection XZ method[14] described in the following.
points with all larger lattices. The errors of the end points are drawn  |et us review the general form of the scaling relations for
on the ordinate. different observable®

relies on the exact location of the critical point. Since there is O=LP"Qu(tLY" L™ ), (16)
no result from numerical studies, we check the aforemen-

tioned value of Butera and Comi first. We determiieby  \where we only take the largest irrelevant exponent into ac-
Studying the Binder cumulargr, which is a finite-size- count. Here® is M, X, Or g, with p= —ﬂ, v, and 0, respec-
scaling function tively. Expanding the functioQ,, to first order in the vari-

_ ables we find
0, =Qq(tLY",L ™). (10)

—_1 plv -w v )
The functionQ, depends on the thermal scaling field and on O=L"(Cot(CytCol " ™)ILT+ ol ), (17
possible irrelevant scaling fields. In this case only the Ieadin%vhiCh reduces 1o
irrelevant scaling field proportional o™ “ is specified, with
an unknownw>0. Therefore, at the critical point€0) g,
ought to be independent a&f apart from corrections due to
these irrelevant scaling fields. Figuréjlshows our results
for g,. On the scale of Fig. (&) we observe no deviation
from the scaling hypothesis. After an enlargement of th
close vicinity of the critical point, as shown in Fig(kl, one

O=LP"(co+cal ™) (18

at the critical pointt=0. Therefore at the critical coupling a
fit with Eq. (18) has the minimal2. Since we do not know
She influence ofcsL ¢ we started without this correction

sees that the intersection pointg, between the curves of term leavingL =12 out. Figure &) shows the result. We

. ) points find a deviation from our preliminary result in case of the
different lattices are not coinciding perfectly at aherhese maanetizatioM and the suscentibility. . The minima from
minor corrections to scaling have to be considered. By ex: 9 P X -

panding the scaling functio@, to lowest order in both vari- the Binder cumulant and the susceptibiljtyhowever, coin-

; . . cide atJ~1.42865.
aples one gets forr the intersection poily; of two latfices We thereafter made fits with the correction term in the
with sizesL andL’=bL

rangew=0.5—1.5. The minimak? and a perfect agreement

Jip(L,b)=Jc+cys(L,b) (11  of Jc for all _observabzles is found ab=0.5. This result is
plotted in Fig. 3b). x° per degree of freedond.o.f.) in-
with creases withw and shiftsJ, in case ofM and y, to smaller
couplings, while the position calculated fropincreases and
Cl-be J. from g, remains nearly constant. Since the fits get worse
s(L.b)= bv—1 L ’ 12 we can excludev values larger than 0.8. The positionsJf
for 0.5<w=0.8 coincide within the error bars of E(L5).
To have an unbiased estimate Xfwe choose Binder’s ap- At the critical point the Binder cumulant has the form
proximation[13]
gr(L)=9,(Jc) +cak ™, (19
1 1 ¢
Jp J_C+ Inb’ (13 With the universal valug,(J.) and a small correction term

csL~“. For fits with differentw we find g,
which can be used without knowing the values/@indw. In
Fig. 2 the 1J;, values of the intersection points from the 0:(Jc)=—1.9445610). (20)
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5
FIG. 3. The minimaly? per
14T ] degree of freedom for fits accord-
ing to Eq.(18) for M (solid gray,
X, (short dashex x (solid), and
13 ] g, (long dashey (a) shows the re-
sults without a correcting term
xL~“ whereas(b) usesw=0.5.
1027 ] The dotted lines show our previ-
ous value ofJ., the arrows the
- | result of [12] with its error bars.
\ i The curves oM andy, lie on top
J d of each other.
‘ 1L . . 1L

| L L 0 L L
1.4284 1.4286 1.4288 1.4290 1.4284 1.4286 1.4288 1.4290

The quality of the fits does not change mugyf per d.o.f.  Our results of8/v and y/v are tested with the hyperscaling
~0.2-0.3) with differentw so a better estimate @ is still relation
not possible.

2217 g, 27)

B. The critical exponents v v
~ Since we now know the critical coupling we can study theyith d=3 being the dimension of the model. The left-hand
finite-size behavior of several observables with Ef8).  side of this equation is 2.998), correct within the error.
These can be extracted from our reweighted dafg;afThe Finally we analyze the derivativeg, /dJ of the Binder
studied scaling relations are cumulant atT,. This observable is directly calculated from

_ _ the spline connection of our reweighted data in the neighbor-
— Blv )

M=L (80+asl ™), @D hood of the critical point. The errors are obtained with the

22) jack-knife method, which seems to underestimate the errors,
so we therefore assume the largest error of the diffekent

with © e[0.5;1.0 and the exponents /v and /v as free yalues for egch Iaztt|ce. Our fit to a_nse(&4) Wlt.hou.t correc-
parameters. Since these two ratios are connected by the hijons to scaling ¢ per d.o.f~=0.3) is shown in Fig. 5. For
perscaling relation d;=0 we find

x=L""(by+bgL™®),

1
Y_ 5 % 23 ~=1.2235). 28

14 14

it is necessary to study a further observable, for example thehe final results of the critical exponents are summarized in
derivative ofg, , which is given afT,, by Table Il. 8 and y are calculated with the result efand the
ro c

ratios(25) and(26). The three last columns of the table show

g, .
27— (do+dsl ™). (24) osof T T ]
M %
In this way two independent exponeltésg., 3 andv) can be I s
estimated. We fit all observables in the range 12—72. 0.25r- //. ]
From Eq.(21) we obtain I e
L 7 J
0.20r /" ]
E =0.5192), (25 I s ]
14 /s
I yd ]
in which the error also includes am variation in[0.5, 1.0. 0.15¢ / ]
Here a largemw shifts B/v to a smaller value at nearly con- i Y
stant y? per d.o.f=0.4. Figure 4 shows the result with 0 10l L 1
=0.5. - I ! I
Our y fits yield 0.1 0.2 0.3
FIG. 4. The magnetizatioM as a function of the lattice exten-
Y =1.9613). (26) sionL at the criticql pointT. andH=0. The dashed line in is a fit
v to the ansatZ21) with w=0.5.
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O T In the symmetric phasel&J.) the situation is different.

» . While the measurements of the magnetization are less corre-
] lated with7,,,;(M) =<4, the correlation of the energy increases
29 N\ ] rapidly with decreasingH and J. It reaches values of

N | Tint(E) =30 for the larger lattices.

s A. The critical isotherm

N | At the critical point the critical scaling of the magnetiza-
N tion is given by

M(T¢,H)=dcHY(1+dgH "), (3D
_10 - L 4
, , . , where nonanalytic corrections from the leading irrelevant
0 50 100 150 200 scaling field are taken into account. They are not negligible
in our model. The critical exponent8 and v, are known

from the hyperscaling relations and only depend on the ratio

FIG. 5. The derivative of the binder cumularg, /9J as a func-
tion of the lattice extensioh at the critical poinfT, andH=0. The

dashed line is a fit to the ansaf24) with d;=0 since the correc- plv=0.5192).
tions are negligible. v
6=3—-—1=4.78022), (32
the results fronj12], [15], and[16,17]. Butera and Comi as B
well as Gracey are in good agreement with our values, but
the results of Antonenko and Sokolov are farther away. ,,czl =0.403124). (33)
In the following sections we use the fixed critical expo- Bé

nentsB=0.425 andvy=0.818. The remaining critical expo- der t lude finite-si ffect t
nents are calculated by the respective hyperscaling reIatioHQ order fo exclude finite-size efiects we carry out a re-
between the critical exponents. Forwe will use the value weighting analysis for all lattices and fit the result from the

_ ; ; ; . . _largest lattice to approximate the value 6f>. This is
=0.5, which seems to be the best estimate in all investiga- i .
';)ons 9 done for the intervaH €[ 0.00075;0.04 and we find

d.=0.6421). (34)
[ll. SIMULATIONS AT H>0

o _ Our result is plotted in Fig. 6. There are minimal negative
The magnetizatioM is now calculated from EQ3). A coqrections. If one treats as a free parameter the reselt
transversal and a longitudinal susceptibility can be defined a§4.79(1) agrees with our first estimate.

The finite-size-scaling function for the magnetization is

xL=V((M?)—M?), (29)
) M(T,H,L)=L"#*® (L™ HLYe L"), (35
xt=V(($")?). (30) . . .
=V ) The scaling functionb can be expanded ib™“ to
We simulated at several constahtvalues and increasing
. X 8 . —1 —Blv 1w 1/
magnetic field, starting & =0.00025. The used lattice sizes M(T.H,L)=L Po(tL HLHe) 4. (36)

were L=24, 36, 48, 72, 96, and 120. Around 20000 mea- . . .
surements were performed in thé i) regions we used for At T the leading part is now given by

our fits. The only exception was the datalof 120, where M(Te,H,L)=L"#"Qu(z") (37)

we performed 10 000 measurements aand 5000 measure-

ments at all othed values. The integrated autocorrelation with the universal scaling functio®,,(z’) and the argument
time for the energy and the magnetization is strongly depenz’ =HLY*c. The results of all lattices are shown in Fig. 7.
dent on the used values. AtJ, andJ>J. we increased the The data points scale very well and the influence of correc-
number of cluster updates between two measurements tns to scaling is small. In the limit’—o we expect the
have autocorrelation times,,;<6. asymptotic behavior

TABLE Il. The critical exponents for the ) model estimated in this work compared to the theoretical
work of Butera and Comii12], Atonenko and Sokoloy15], and Gracey16,17].

Source Exponent This work [12] [15] [16,17
a9, 19 v 1.2235) v 0.8185) 0.8193) 0.790 0.819
M Blv 0.5192) B 0.4252) 0.4245) 0.407 0.424
X vlv 1.9613) y 1.6046) 1.6084) 1.556 1.609

036111-5



S. HOLTMANN AND T. SCHULZE

0.25F
M(J,)

H

0 0.0025 0.005 0.0

FIG. 6. The magnetization at the critical coupling as a function

|
075 0.

01

of H. The solid line is the fit to the ansaf31), while the dashed

line is the leading term.

QMyoo(Z’) — dczr 1/57

which is observable foz’=40. This way one checks the

(38)

value ofd. with a fit of reweightedz’ data of the larger
latticesL =72, 96, 120. We findl.=0.644 1), which agrees

perfectly with our first value ofl. .

B. Numerical results at T# T,

PHYSICAL REVIEW E68, 036111 (2003

1/2

H

.05 0.1 0.

15

FIG. 8. The magnetization in the broken phase as a function of
\/ﬁ for the couplingsJ=1.6, 1.55, 1.50, 1.47, 1.45, ariy and
different lattices, starting with the largedtvalue at the top. The
solid lines represent interpolations from a reweighting analysis of
the data. The dashed lines are the fits to angkzwhile the dotted
line is the fit of Eq.(31) atJ,.

~M(TH) -
Xr=—ph— (39
for all H andT. This relation is a direct consequence of the
O(6) invariance of the zero-field free energy and can be de-
rived as a Ward identity19].

The longitudinal susceptibility diverges on the coexist-

Let us review some perturbative predictions for the magence curve for 2d<4 [20,21. The leading terms in the
netization and the susceptibilities. The continuoy6)@ym-

metry of our spin model gives rise to spin waves, which are
slowly varying (long-wavelength spin configurations with
energies arbitrarily close to the ground-state energyd In

perturbative expansion for three dimensions are

XLU(T<T.,H)=bo(T)H Y2+ cy(T). (40)

>2 they are massless Goldstone modes associated with ti&nce the susceptibility is the derivative of the magnetization
spontaneous breaking of the rotational symmetry for temwith respect toH we find for the magnetization

peratures below the critical valug; [18]. For T<T,. the
system is in a broken phase, i.e. the magnetizatigii,H)

attains a finite valué(T,0) atH=0.

The transverse susceptibility has the form

T ML T T
2.0r / b
[ MLP””
i 0. 0120 ]
1 5» M, . 96
[ ge 072
2 x 48
1.0F § a 36 T
& o 24
%
(=3
5
0.5 . —
[ 8 1
0 HL /v
Ll o
O‘O 1 PR n | | - P
0 50 100 150 200

FIG. 7. The finite-size-scaling functidy, .. on the critical line,

Eq. (37). The solid line indicates the asymptotic functiQy_. for

z'=40.

M(T<T¢,H)=M(T,0)+cy(T)HY+cy(T)H  (41)
near the coexistence curve. Figure 8 shows our results of the
magnetization in the broken phase and the corresponding
extrapolations toM(T,0) in the thermodynamic limit\{
—). The numbers of the parameters are presented in Table
Ill. The H extension of the regions, where the predicted
Goldstone behavior is found, increases withwhile finite-
size effects become larger at smHlland largerd (L=160
would be necessary for finite-size independent data

We fitted the values oM (T,0) to the form

M(T=T0)=B(Tc—T)A[1+by(Tc—T)*"+by(T—T)]
(42

with fixed valuesB=0.425,wv=0.409 and the result

B=1.221), (43)
b;=-0.184(49), and,=0.31(13). The error oB also in-
cludes the slight uncertainty in the value @¥. Our final
result of M(T,0) and the difference to the leading term are
plotted in Fig. 9.
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TABLE lIl. Parameters of the fit oM (T<T_,0) to the ansat#1). The fifth column is the used fit range.

J=1T M(T,0) ci(T) co(T) 10°H X2 per d.o.f.
1.45 0.170103) 1.33915) —2.8618) 9-25 0.45
1.47 0.221902) 0.92402) —1.13814) 12-74 0.56
1.50 0.276101) 0.65901) —0.43608) 10-93 0.27
1.55 0.340101) 0.46301) —0.14102) 10-163 0.78
1.60 0.387801) 0.36301) —0.04701) 19-175 0.49

Since one of the main aims of this work is the determina—H0=d55=8.32(6). Thefunction f(x) is universal and was
tion of the magnetic equation of state in Sec. IV, we alsoderived from thee expansion é=4—d) to ordere? [19]. In
simulated in the high temperature phase. Again we use datae limit x— —1, i.e., atT<T, and close tdH=0 the result
of the largest lattices as an approximation for the infinitewas inverted to givex+1 as a double expansion in powers
volume value. The result is plotted in Fig. 10. From a Taylorof y andyd/Z—l [21]
expansion we expect

S o 21 T 2T 2 T yd—2
M(T>T.,H)xH (44) X+1=Cry+Coy™ e T dyy +doy™ +day™

(49
at smallH. With increasing temperature th interval with -
this behavior increases, as one can see in Fig. 10. The coefficient&,, €,, andd; are thereafter obtained from
the general expression ff9].
IV. THE SCALING FUNCTION In the Iargex limit (Corresponding td_>TC and smaIIH),

the expected behavior is given by Griffiths’s analyticity con-
The critical behavior of the magnetization in the vicinity dition [22]

of T, is described by the general Widom-Griffiths fof2P]

©

y="F(x) (45) f(x)= >, a,x?"2n"DA, (49)
n=1

with
5 LA 1B The form (45) of the equation of state is equivalent to the
y=h/M?— x=t'IM-7, (46)  often used relation

where the variablé’ is proportional to T—T,.) andh pro-
portional toH. A common normalization of the functidi{x)
iS

M=h%f5(z), (50)

where fg is a further universal scaling function arzdthe
f(0)=1, f(—1)=0. (47) combination

The variableg’ andh are the conveniently normalized re- z=t'/n%?, (52)
duced temperaturet’=(T—T.)/T, with To=B ¢ o N
=0.626(12) and the reduced magnetic fialdH/H, using ~ The normalization conditions dfs(z) are

0.4 T T
0 20_— M 9
0.3 0.15f .
0.2 0.10 T
0120
+ 96
0.05H 072 4
0.1 « 48
H
TC_T 0 1 1 |.
1 I I 0 0.002 0.004 0.006

0 0.025 0.05 0.075 L i
FIG. 10. The magnetization in the symmetric phase={T;) as

FIG. 9. MagnetizationM(T,0) on the coexistence curve as a a function ofH, starting from the top with fixed=J., 1.42, 1.41,
function of (T.—T). The solid line is the fit to ansatd2) while the  1.40, and 1.38 and differemt values. The lines are spline connec-
dashed line is the leading part. tions between the data points.
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%%o
1 [N BRI RN R

O L L n L
-10 -7.5 -5 -2.5 0 2.5 5

FIG. 11. The functionM/h¥?. The solid lines in the broken
phase are the reweighted results ffth'? at J=1.60, 1.55, 1.50,
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rect the data withz<—2 because we have not enough
values closer td. to make the fits. In Fig. 11 we show the
influence of the corrections and the final scaling functign
in the broken phasé&ashed ling

Our result forf g(z) can be transformed witts3) into the
Widom-Griffiths form of the equation of the stat45). Un-
fortunately thez interval we used to extradig(z) is only
equivalent to the small region 0.9<x=< —0.7, which can be
used for a fit. We use the three leading terms in @8)

X1(y) +1= (T, +da)y+Toy '+ d,y*2 (56)

Since y(0)=1 the coefficients are connected fmy=1

—(8,+d3+%T,). Fits tox in the interval —0.9sx<—0.7
and points in the symmetric phase with £2<2.9, 1.4
=<J<J., andH=0.0015 lead to

1.47, 1.45, 1.445, and 1.44, from the bottom to the top. They are

extrapolated with Eq55) to f 5 (dashed ling The circles are single
data points in the symmetric phase.

z——

fe(0)=1 and fg(z) —— (—2)%. (52)

This version is normally used for comparison to QCD lattice

data. The functiorf(x) is connected withf 5(z) by
y=fg’, x=zfs". (53)

These scaling functions are only valid close Xp and H

T, +d;=0.365), T,=0.693). (57)
The result of the fit is shown by the line in Fig. (82
For largex we use a 3-parameter fit of the first three terms
of Griffith’s analyticity condition(49)
Yo(X)=aix?+a,x? " 2P+axr 4P (58)
in the intervalxe[1.75,202 and data points restricted to
1.4<J<J; andH=<0.0015. We find

a;=0.921), a,=1.172),

— 0. First tests show that the data we have used in the broken

phase do not scale directly, while in the high temperature

phase most of the data scale closa'tcand smallH. So we
used a more general form ¢50)

Mh™ Y=y (z,hov) (54)
with a scaling functiorit’, which can be expanded to

Mh™=f(z)+herefd)(z) +h2oref @ (z) +--- .
(55)

a;=0.91(3). (59
This result is plotted in Fig. 1B). With the coefficienta; of
the leading part one can calculate the universal ratio
R,=a; "=1.142). (60
The Q6) scaling functionf 5 can be parametrically obtained
from x4(y) andy,(x), which is connected by a spline be-
tweenz=0.5 andz=0.8, where we have no reliable param-

This way in the broken phase one obtains the leadingfgart etrization. The result is plotted in Fig. (8. Also plotted are

by quadratic fits to our data in“"c at constant values and

the leading terms of the asymptotic behaviorzat + «.

different (3/H) combinations. But we are only able to cor- These are

1ol T T T T T T 8000 T
v (x) (T<T.) y (%) (T>T)
0.8r 4 4000F FIG. 12. The functionsy
=f(x) at smallx (a) and largex
0. 6k 1 3000k i values(b). In (a) we plot the fit to
’ ansatz (56) using extrapolated
data in the broken phase and data
0.4 4 2000} . points in the symmetric phase. In
(b) we plot data points of the sym-
metric phase and the fit to ansatz
0.2F (a) 1 1000F (b) T (49) using the first three terms.
X X
1 l 1 L 1 L 1 L 1 1 O 1 1 L 1
-1.0 -0.8 -0.6 -0.4 -0.2 0.0 50 100 150 200
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2.0—\""'"""—2.01\'\""5""'—
[\ M/t ] [N M/RY ]
\\ B | I "--,m.\~ B —_— O (1)
AN : | I \ |
1.5¢ ; 4 1.s5f Dy o(2) - FIG. 13. (a) The scaling func-
[ N : ] [ Ay L - o(4) | tion fg of the Q6) model (solid)
. ‘ —— o(6) | and the asymptotic behaviors for
1.0k NN e 10 ] z— andz— — (dashed lines
N\ S . - : (b) The scaling functiorf s for the
YooY ] [ ] Ising (solid), O(2) (dots, O(4)
4 N (short dashes and Q6) model
0.5r X 1 0-5¢ (long dashes
(a) \ ] L )
£ /n/P ) I
1 1 " 1 0 1
-5 -2.5 0 2.5 5 -5 -2.5 0 2.5 5
7o The maximum off,(z) is located atz,, which is another
fo(z) = (—2), (61) universal quantity. We find for the (6) model
z+w z,=1.345). (65)
fe(z) = Rz (62

The error includes the fit errors of the parameters in(E§).
In Fig. 14 we show the result fdr,(z) from Eq. (64) in
| the Q6) model. Atz, a finite-size-scaling analysis in the
variablesH andL can be performed. Equatiq6) reduces

according to the normalizatio(b2). The fact that for large
temperatures and smdfl the magnetization is proportiona
to H, see Eq.(44), explains the asymptotic behavior far
—o0, In the symmetric phase the asymptotic behavior is'©
reached for small absolute values Dfwhile in the broken
phase the scaling function converges to the asymptotic form
not until large absolute values af

Fina”y, the @6) Sca“ng functionfG can be Compared to with another universal Scaling fUﬂCti@zp. The asymptotic
the corresponding functions for the Isif@(1)] model[23],  form Q, .. of Q, is
the O2) model[10], and the @) model[9], shown in Fig. P P
13(b). All functions have a similar shape.

M(H,L)=L’B’”sz(hLl”’C)+--- (66)

L—oo

sz - sz,m: fG(Zp)(hLllvc)lm- (67)
V. THE PSEUDOCRITICAL LINE
The results are presented in Fig(d5 The data do not scale
easier way, it is common to study lines of constanalues. directly but with increasing volume the data points approach

There one expresses as a function ofT or vice versa. Jz, 1om the top. In Fig. 18) we plotted the data in a
Important examples of lines of fixer are the critical line double-logarithmic form and find that the asymptotic form
(z=0), discussed in Sec. lllA, and the pseudocritical lineQz,,-» coincides with theQ, value of the largest lattice ex-
z=1z,=const, the line of peak positions of the susceptibility

xL in the(t, h) plane forv—o. There are two different ways 04—
to find that value ofz, for O(N) models. One way is to :
locate the peak positions gf as a function of the tempera-

ture at different fixed small values of the magnetic field on 0.
lattices with increasing size®. The scaling function, on the

other hand, offers a more elegant way to determine the

In order to discuss finite-size-scaling functions in an

pseudocritical line. Sincg, is the derivative oM 0.
X= 50 T TH, f (2), (63 0.

its scaling functionf,(z) can be calculated directly from
fs(2)

fx(z)_% fo(z)— E M_G( ). (64) FIG. 14. The scaling functioh, for the Q(6) model. The dashed

z
B 0z line shows the position af,=1.34.
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FIG. 15. (a) Finite-size scaling oM L#"* on the pseudocritical linéb) is a double-logarithmic plot ofa). The solid line in(b) shows the
asymptotic foerZp =, the symbols denote different lattice sides

the magnetization. In this case the corrections to scaling were
again negative and more pronounced as on the critical line.
At high temperatures anH <0, we observed the expected
proportional dependence & of the magnetization.

We used our data of the largest lattices in the low- and
high-temperature phase to parametrize the scaling function

¢ of the O6) model. We encountered large corrections to

theln(;ggssp?r??rr];\(/jeergli(r:glcz'?lte?rgﬁlvi;ilg%;tr?gts?nliiratgfssoﬁcaling in the broken phase, while most data in the symmet-
P y ric phase scales directly. By generalizifig to include cor-

grr;tigglblgofttl'iﬁesj Al; erc;irﬁ;(etirir;ael_sff;ﬂnweagzlte;g'g?dthtgerections to scaling, our group extracted a partf gfin the
: ping Je by 2 9 Y .~ broken phase and fitted the result combined with direct data
Binder cumulant and by thg~ method. Our result agrees in

, L . points in the symmetric phase. On the other hand, we fitted
thi.f'r?t fo'ut[ digits \;\."th Ihg :ﬁsultigf Blutera andtC(f)ml. '?t t}:e data of the symmetric phase using Griffiths’s analyticity con-
grlzécicgﬁr% \f’:{; e\jvlemgb?aineg ?:l)lr(r:latr?exprggggestizr;t?;n?l € dition. Finally, we compared our ©) result forfg with the

from the susceptibility, andv from the derivative of the corresponding scaling functions of thé 1) O(2), and G4)

Binder cumulant. Our results are in accord with the vaIuesmOdeI' These functions are clearly distinguishable and in a

found by Butera and Comi but slightly different compared tosystemauc order. We use our result if to calculate the

the values found by Antonenko and Sokolov. We find smallSCaIIng anCt'or.TfX of the suscgpt|b|l|ty. From the ppfsmon_ of
) . the maximum inf  the location of the pseudocritical line
corrections to scaling for all observables. X

On the critical lineT=T,, H>0 and in the limitV was determl'ned. There we made flnlte—S|;e-scaI|ng plots and
. . o found considerable corrections to scaling. The data of
—oo, the critical amplituded, of the magnetization was

computed. We found small negative corrections to Scalinqsmaller lattices approach the universal finite-size-scaling
and checked the finite-size-scaling behavionbht T, and unction from above. The asymptotic form of the universal

its asymptotic form part is reached aHLc~42. A comparison between the

Below the critical temperature, we investigated the behavp(6) model and aQCD will be done in the near future.

ior of M at several couplingd as a function oH? in the
limit V—o. Close to the coexistence line, i.e., small
—0, the predicted Goldstone behavior was observed. We ex- We are grateful to Jgen Engels and Sandra Wanning for
trapolated our data to the valud$(T<T.;H=0) of the reading this manuscript carefully. Our work was supported
infinite volume limit, fitted theseM values with the corre- by the Deutsche Forschungsgemeinschaft under Grant No.
sponding ansatz, and estimated the critical amplitBdef = FOR 339/1-2.

tension atHLY"c=42. Therefore,Q, is asymptotic. At
smaller values, one observes an approao@zgffrom below
to sz o

VI. CONCLUSIONS
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